[1] L.J. Gibson; M.F. Ashby, Cambridge University Press (1997), p. 510
[2] A. Öchsner; C. Augustin Multifunctional Metallic Hollow Sphere Structures, Springer, 2009 (251 pages)
[3] http://www.ifam.fraunhofer.de/en/Dresden/Cellular_metallic_materials/Hohlkugelstrukturen.html (last access October 2014)
[4] http://hollomet.com/en/home.html (last access October 2014)
[5] K. Stöbener, D. Lehmhus, N. Zimmer, J. Baumeister, German Patent, DE 103 28 047, 2005 (2005).
[6] J. Baumeister; J. Weise; E. Hirtz; K. Höhne; J. Hohe Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicle, Proc. Mater. Sci., Volume 4 (2014), pp. 301-305
[7] http://www.plasticstoday.com/sites/default/files/Web_D_TPO_3M_IM%20Guidelines_glass_bubbles.pdf (last access October 2014)
[8] http://www.envirospheres.com/products.asp (last access October 2014)
[9] http://www.ceminerals.com/scopi/group/ceminerals/ceminerals.nsf/pagesref/LONL-942J2N/$file/KKWBUBBLE.pdf (last access October 2014)
[10] http://www.palmerholland.com/Assets/CE/Documents/data-sheets/S60%20Glass%20Bubbles.pdf (last access October 2014)
[11] B.H. Rutz; J.C. Berg A review of the feasibility of lightening structural polymeric composites with voids without compromising mechanical properties, Adv. Colloid Interface Sci., Volume 160 (2010), pp. 56-75
[12] J.A. Santa Maria; B.F. Schultz; J.B. Ferguson; N. Gupta; P.K. Rohatgi Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380–Al2O3 syntactic foams, J. Mater. Sci., Volume 49 (2014), pp. 1267-1278
[13] I. Norbet Orbulov Metal matrix syntactic foams produced by pressure infiltration, the effect of infiltration parameters, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. (2013), pp. 11-19
[14] A. Laptev; M. Bram; A.P. Buchkremer; D. Stöver Study of production route for titanium parts combining very high porosity and complex shape, Powder Metall., Volume 47 (2004) no. 1, pp. 85-92
[15] A. Laptev; O. Vyal; M. Bram; H.P. Buchkremer; D. Stöver Green strength of powder compacts provided for production of highly porous titanium parts, Powder Metall., Volume 48 (2005) no. 4, pp. 358-364
[16] C.F. Li; Z.G. Zhu; T. Liu Powder Metall., 48 (2005) no. 3, pp. 237-240
[17] N. Tuncer; E. Maire; L. Salvo; G. Arslan Investigation of p/m parameters' effect on architecture of titanium foams using X-ray microtomography, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 530 (2011), pp. 633-642
[18] M. Bram; C. Stiller; H.P. Buchkremer; D. Stover; H. Baur High-porosity titanium, stainless steel and superalloy parts, Adv. Eng. Mater., Volume 2 (2000), p. 196
[19] Y.Y. Zhao; D.X. Dun A novel sintering-dissolution process for manufacturing Al foams, Scr. Mater., Volume 44 (2001), p. 341
[20] Cellular materials: new concepts provide unique possibilities—feature article, The Iron Age, February 8 (1962), pp. 119–121.
[21] C. San Marchi; J.F. Despois; A. Mortensen Uniaxial deformation of open-cell aluminum foam: the role of internal damage, Acta Mater., Volume 49 (2001), p. 3959
[22] R. Goodall; A. Marmottant; L. Salvo; A. Mortensen Spherical pore replicated microcellular aluminium: processing and influence on properties, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 465 (2007), pp. 124-135
[23] R. Goodall; A. Marmottant; L. Salvo; A. Mortensen Spherical pore replicated microcellular aluminium: processing and influence on properties, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 465 (2007) no. 1–2, p. 124
[24] http://www.innovationcells.ch/en/projects/aluminium-foam/just-mix-salt-flour-water-and-aluminium.html (last access October 2014)
[25] J. Dairon; Y. Gaillard; J.-C. Tissier; D. Balloy; G. Degallaix Parts containing open-celled metal foam manufactured by the foundry route: processes, performances and applications, Adv. Eng. Mater., Volume 13 (2011), pp. 1066-1071
[26] http://www.alveotec.fr (last access October 2014)
[27] J. Banhart Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., Volume 46 (2001), pp. 559-632
[28] http://www.ergaerospace.com/Aluminum-properties.htm (last access October 2014)
[29] Y. Yamada; K. Shimojima; Y. Sakaguchi; M. Mabuchi; M. Nakamura; T. Asahina; T. Mukai; H. Kanahashi; K. Higashi Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3, J. Mater. Sci. Lett., Volume 18 (1999), pp. 1477-1480
[30] D.T. Queheillalt; D.J. Sypeck; H.N.G. Wadley Synthesis of open-cell metal foams by templated directed vapor deposition, J. Mater. Res., Volume 16 (2000), pp. 1028-1036
[31] http://www.dunlop-equipment.com/prod_retimet.htm (last access October 2014)
[32] http://www.nickelfoam.cn/info/Nickel-foam-130-1.htm (last access October 2014)
[33] http://www.novametcorp.com/products/incofoam/ (last access October 2014)
[34] http://www.ultramet.com/refractoryopencells.html (last access October 2014)
[35] http://www.recemat.nl/eng (last access October 2014)
[36] S.K. Goel; E.J. Beckman Generation of microcellular polymeric foams using supercritical carbon dioxide. I. Effect of pressure and temperature on nucleation, Polym. Eng. Sci., Volume 34 (1994), pp. 1137-1147
[37] K.A. Arora; A.J. Lesser; J.T. McCarthy Preparation and characterization of microcellular polystyrene foams in supercritical carbon dioxide, Macromolecules, Volume 31 (1998), pp. 4614-4620
[38] E. Reverchon; S. Cardea Production of controlled polymeric foams by supercritical CO2, J. Supercrit. Fluids, Volume 40 (2007), pp. 144-152
[39] I. Tsivintzelis; A.G. Angelopoulou; C. Panayiotou Foaming of polymers with supercritical CO2: an experimental and theoretical study, Polymer, Volume 48 (2007), pp. 5928-5939
[40] T. Ohji; M. Fukushima Macro porous ceramics: processing and properties, Int. Mater. Rev., Volume 57 (2012), pp. 115-131
[41] A.R. Studart; U.T. Gonzenbach; E. Tervoort; Ludwig J. Gauckler Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., Volume 89 (2006) no. 6, pp. 1771-1789
[42] S. Vijayan; R. Narasimman; C. Pruvdi; K. Prabhakaran Preparation of alumina foams by the thermo-foaming of powder dispersions in molten sucrose, J. Eur. Ceram. Soc., Volume 34 (2014), pp. 425-433
[43] J. Bahnart Light-metal foams—history of innovation and technological challenges, Adv. Eng. Mater., Volume 15 (2013) no. 3, pp. 82-111 (special issue)
[44] M.A. De Meller, French Patent 615,147, 1926.
[45] J.C. Elliott, Method of producing metal foam, USA Patent 2,751,289, 1956 (1951).
[46] B.C. Alen, Method of making foamed metal, United States Patent No. 3,087,807, filed 4th Dec 1959.
[47] W.S. Fiedler, Method of making metal foam bodies, USA Patent 3,214,265, 1965 (1963).
[48] I. Jin, L.D. Kenny, H. Sang, Method of producing lightweight foamed metal, USA Patent 4,973,358, 1990 (1989).
[49] W.W. Ruch, B. Kirkevag, A process of manufacturing particle reinforced metal foam and product thereof, European Patent 0 483 184, 1994 (1990).
[50] http://www.cymat.com/ (last access October 2014)
[51] S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed metal and method of producing same, European Patent 0 210 803, 1989 (1986).
[52] J.D. Bryant, J.A. Kallivayalil, M.D. Crowley, J.R. Genito, L.F. Wieserman, D.M. Wilhelmy, W.E. Boren, Method for producing foamed aluminum products by use of selected carbonate decomposition products, USA Patent 7,452,402, 2008 (2005).
[53] J. Baumeister, J. Banhart, M. Weber, Verfahren zur Herstellung eines metallischen Verbundwerkstoffs [Process for manufacturing metallic composite materials], German Patent 44 26 627, 1994.
[54] H. Stanzick; M. Wichmann; J. Weise; L. Helfen; T. Baumbach; J. Banhart Adv. Eng. Mater., 4 (2002), p. 814
[55] V. Gergely; T.W. Clyne The effect of oxide layers on gas-generating hydride particles during production of aluminium foams (D.S. Schwartz; D.S. Shih; A.G. Evans; H.N.G. Wadley, eds.), Porous and Cellular Materials for Structure Applications, Materials Research Society, Warrendale, 1998, p. 139
[56] M. Gauthier; L.P. Lefebvre; Y. Thomas; M.N. Bureau Production of metallic foams having open porosity using a powder metallurgy approach, Mater. Manuf. Process., Volume 19 (2004) no. 5, pp. 793-811
[57] http://www.metalfoam.net/companies.html
[58] R. Goodall; A. Mortensen Porous metals (David E. Laughlin; Kazuhiro Hono, eds.), Physical Metallurgy, vol. 24, Elsevier, 2014
[59] K.V. Wong; A. Hernandez A review of additive manofacturing, ISRN Mech. Eng., Volume 2012 (2012), p. 208760 (pp. 10)
[60] W.E. Frazier Metal additive manufacturing: a review, J. Mater. Eng. Perform. (2014), pp. 1917-1928
[61] B. Vayre; F. Vignat; F. Villeneuve Metallic additive manufacturing: state-of-the-art review and prospects, Mech. Ind., Volume 13 (2012), pp. 89-96
[62] L.E. Murr; S.M. Gaytan; D.A. Ramirez; E. Martinez; J. Hernandez; K.N. Amato; P.W. Shindo; F.R. Medina; R.B. Wicker Metal fabrication by additive manufacturing using laser and electron beam melting technologies, J. Mater. Sci. Technol., Volume 28 (2012), pp. 1-14
[63] L.E. Murr; S.M. Gaytan; F. Medina; H. Loez; E. Martinez; B.I. Machado; D.H. Hernandez; L. Martinez; M.I. Lopez; R.B. Wicker; J. Bracke Next-generation biomedical implants using additive manufacturing of complex cellular and functional mesh arrays, Philos. Trans. R. Soc. A, Volume 368 (2010), pp. 1999-2032
[64] L.E. Murr; K.N. Amato; S.J. Li; Y.X. Tian; X.Y. Cheng; S.M. Gaytan; E. Martinez; P.W. Shindo; F. Medina; R.B. Wicker Microstructure and mechanical properties of open cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., Volume 4 (2011), pp. 1396-1411
[65] P. Heinl; L. Muller; C. Korner; R.F. Singer; F.A. Muller Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater., Volume 4 (2008), pp. 1538-1544
[66] E. Marin; S. Fusi; M. Pressaco; L. Paussa Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium, J. Mech. Behav. Biomed. Mater., Volume 3 (2010), pp. 373-381
[67] M. Suard; P. Lhuissier; R. Dendievel; J.J. Blandin; F. Vignat; F. Villeneuve Towards stiffness prediction of cellular structures made by electron beam melting (EBM), Powder Metall., Volume 57 (2014) no. 3, pp. 190-195
[68] M. Aliakbari Additive manufacturing: state-of-the-art, capabilities, and sample applications with cost analysis, Department of Industrial Production, KTH University, 2012 (Master thesis)
[69] A.A. Antonysamy Microstructure texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications, Department of Materials Engineering, University of Manchester, 2012 (Thesis)
[70] T. Vilaro; C. Colin; J.D. Bartout As fabricated and heat-treated microstructures of the Ti6Al4V alloy processed by selective laser melting, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 39A (2008), pp. 3190-3199
[71] P.A. Kobryn; S. Semiatin The laser additive manufacturing of Ti–6Al–4V, JOM, Volume 53 (2011), pp. 40-43
[72] K. Kempen; L. Thijs; J. Van Humbeeck; J.-P. Kruth Mechanical properties of AlSi10Mg produced by selective laser melting, Phys. Proc., Volume 39 (2012), pp. 439-446
[73] B. Ahuja; M. Karg; K.Y. Nagulin; M. Schmidt Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed, Phys. Proc., Volume 56 (2014), pp. 135-146
[74] W. Fude; J. Mei; X. Wu Microstructure study of direct laser fabricated Ti alloys using powder and wire, Appl. Surf. Sci., Volume 253 (2006), pp. 1424-1430
[75] E. Brandl; V. Michailov; B. Viehweger; C. Leyens Deposition of Ti6Al4V using laser and wire. Part I. Microstructural properties of single beads, Surf. Coat. Technol., Volume 206 (2011), pp. 1120-1129
[76] H.P. Degischer; A. Kottar On the non-destructive testing of metal foams (J. Banhart; F. Ashby; N.A. Fleck, eds.), Metal Foams and Porous Metal Structures, Verlag MIT Publishing, 1999, pp. 213-220
[77] A. Elmoutaouakkil; L. Salvo; E. Maire; G. Peix 2D and 3D characterisation of metal foams using X ray tomography, Adv. Eng. Mater., Volume 4 (2002) no. 10, p. 803
[78] O.B. Olurin; M. Arnold; C. Körner; R.F. Singer The investigation of morphometric parameters of aluminium foams using micro-computed tomography, Mater. Sci. Eng. A, Volume 328 (2002), pp. 334-343
[79] O. Brunke; S. Odenbach; F. Beckmann Structural characterization of aluminium foams by means of microcomputed tomography, Optical Science and Technology, the SPIE 49th Annual Meeting International Society for Optics and Photonics, 2004, pp. 453-463
[80] A.H. Benouali; L. Froyen; T. Dillard; S. Forest; F. N'guyen Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography, J. Mater. Sci., Volume 40 (2005) no. 22, pp. 5801-5811
[81] J. Vicente; F. Topin; J.V. Daurelle Open celled material structural properties measurement: from morphology to transport properties, Mater. Trans., Volume 47 (2006) no. 9, pp. 2195-2202
[82] K. Mader; R. Mokso; C. Raufaste; B. Dollet; S. Santucci; J. Lambert; M. Stampanoni Quantitative 3D characterization of cellular materials: segmentation and morphology of foam, Colloids Surf. A, Physicochem. Eng. Asp., Volume 415 (2012), pp. 230-238
[83] http://imorph.sourceforge.net/
[84] http://simap.grenoble-inp.fr/le-laboratoire/m-luc-salvo–430404.kjsp?RH=SIMAP_ANNUAIRE2
[85] T. Dillard; F. Nguyen; E. Maire; S. Forest; Y. Bienvenu; J.-D. Bartout; M. Croset; L. Salvo; R. Dendievel; P. Cloetens 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philos. Mag., Volume 85 (2005), p. 2147
[86] T.B. Kim; S. Yue; Z. Zhang; E. Jones; J.R. Jones; P.D. Lee Additive manufactured porous titanium structures: through-process quantification of pore and strut networks, J. Mater. Process. Technol., Volume 214 (2014) no. 11, pp. 2706-2715
[87] G. Pyka; A. Burakowski; G. Kerckhofs; M. Moesen; S. Van Bael; J. Schrooten; M. Wevers Surface modification of Ti6Al4V open porous structures produced by additive manufacturing, Adv. Eng. Mater., Volume 14 (2012) no. 6, pp. 363-370
[88] PhD INPG, 2006.
[89] R. Goodall; J.F. Despois; A. Marmottant; L. Salvo; A. Mortensen The effect of preform processing on replicated aluminium foam structure and mechanical properties, Scr. Mater., Volume 54 (2006) no. 12, p. 2069
[90] E. Maire; P. Colombo; J. Adrien; L. Babout; L. Biasetto Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography, J. Eur. Ceram. Soc., Volume 27 (2007), pp. 1973-1981
[91] L. Salvo; M. Suéry; A. Marmottant; N. Limodin; D. Bernard 3D Imaging in material science: application of X-ray tomography, C. R. Phys., Volume 11 (2010), pp. 641-649
[92] E. Arzt The influence of an increasing particle coordination on the densification of spherical powders, Acta Metall., Volume 30 (1982), pp. 1883-1890
[93] A. Marmottant; L. Salvo; C.L. Martin; A. Mortensen Coordination measurements in compacted NaCl irregular powders using X-ray microtomography, J. Eur. Ceram. Soc., Volume 28 (2008), pp. 2441-2449
[94] B.M. Patterson; K. Henderson; Z. Smith Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography, J. Mater. Sci., Volume 48 (2013), pp. 1986-1996
[95] J.F. Despois; A. Mortensen Permeability of open-pore microcellular materials, Acta Mater., Volume 53 (2005), pp. 1381-1388
[96] PhD INPG, 2009.
[97] C.L. Martin; D. Bouvard; S. Shima Study of particle rearrangement during powder compaction by the discrete element method, J. Mech. Phys. Solids, Volume 51 (2003), pp. 667-693
[98] A. Fallet; P. Lhuissier; L. Salvo; C.L. Martin; A. Wiegmann; M. Kabel Multifunctional optimization of random hollow sphere stackings, Scr. Mater., Volume 68 (2013) no. 1, pp. 35-38
[99] A. Fallet; P. Lhuissier; L. Salvo; Y. Bréchet Mechanical behaviour of metallic hollow spheres foam, Adv. Eng. Mater., Volume 10 ( September 2008 ) no. 9, p. 858